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Abstract. The fidelity for two displaced squeezed thermal states is computed using the fact
that the corresponding density operators belong to the oscillator semigroup. A novel calculation
technique is developed for the computation of the traces of product of Gaussian density operators
and of square roots of Gaussian density operators. The method is exemplified for the one-mode
case but it is also applicable to the multimode case.

1. Introduction

The concept of fidelity is a basic ingredient in quantum communication theory [1, 2].
Recently the corresponding Bures distance was used [3] to define a measure of the
entanglement as the minimal Bures distance of an entangled state to the set of disentangled
states.

Let ρ1 andρ2 be the density operators which describe two impure states. The natural
candidate for the fidelity, denoted byF(ρ1, ρ2), is the transition probability which must
satisfy the following natural axioms:

(F1) F(ρ1, ρ2) 6 1 andF(ρ1, ρ2) = 1 if and only if ρ1 = ρ2;
(F2) F(ρ1, ρ2) = F(ρ2, ρ1);
(F3) If ρ1 is a pure stateρ1 = |ψ1〉〈ψ1| thenF(ρ1, ρ2) = 〈ψ1|ρ2|ψ1〉;
(F4) F(ρ1, ρ2) is invariant under unitary transformations on the state space.

Uhlmann’s transition probability for mixed states [4]

F(ρ1, ρ2) = [trace(
√
ρ1ρ2
√
ρ1)

1
2 ]2 (1)

does satisfy (F1)–(F4).
Investigations into the detailed structure of fidelity has been hampered by the

complicated square-root factors in (1). Due to these technical difficulties in computing
fidelity, few concrete results concerning the details of the fidelity have been found. Until
recently all known concrete results have been calculated only for finite dimensional Hilbert
spaces [5–7]. The first result in infinite-dimensional Hilbert space has been obtained by
Twamley [8] for the fidelity of two undisplaced thermal states. Twamley combines the
Schur factorization with Baker–Campbell–Hausdorff identities. However, as he said these
arguments do not seem to hold for displaced squeezed thermal states. We have obtained
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the fidelity for two displaced thermal states [9] using a result of Wilcox [10]. In the present
paper the fidelity for two displaced squeezed thermal states is computed using the fact that
the corresponding density operators belong to the oscillator semigroup.

2. The oscillator semigroup

In the following, we shall use a completely new method for the treatment of the complicated
square-root factors in (1) in the case of two displaced squeezed thermal states (i.e. in the
case of two displaced mixed quasi-free states [11]). The basic ingredient of the method
is the oscillator semigroup [12, 13]. The oscillator semigroup is the semigroup of integral
operators onL2(R) whose integral kernels are Gaussians (whereR is standard notation
for the real line). The density operators which describe the displaced squeezed thermal
states belong evidently to this semigroup. Indeed the oscillator semigroup (or its closure)
contains the semigroup generated by the Hermite operator [13, 14] which is the Hamiltonian
of the quantum oscillator (and respectively the range of metaplectic representation which
generate the squeezing [15, 16]). The metaplectic representation [12, 13] is the projective
(double-valued) unitary representation of the symplectic group Sp(1,R) on L2(R) defined
by the uniqueness of the canonical commutation relations.

The most general Gaussian density operator in coordinate representation is an integral
operator

(ρψ)(x) =
∫ +∞
−∞
〈x|ρ|y〉ψ(y) dy (2)

where

〈x|ρ|y〉 = exp[−(ax2+ dy2+ 2bxy)+ lx + ky + g]. (3)

In order thatρ is a quantum density operator it must be Hermitian, normalizable and non-
negative [16]. Hermiticity forρ requiresd = ā, b = b̄, k = l̄ and g = ḡ [16]. From
trace ρ = 1 it follows that

g = − (Rel)2

2(Rea + b) − ln
√

π

2(Rea + b)
and Rea > −b. From the non-negativity of〈ψ |ρ|ψ〉 for all |ψ〉 it follows [16] that
−b > 0. Hence Rea > −b > 0. For two quantum density operatorsρ1 andρ2 we have
the semigroup composition law

〈x|ρ1ρ2|y〉 =
∫ +∞
−∞
〈x|ρ1|z〉〈z|ρ2|y〉 dz. (4)

Let us denote byA, B, D, L, K andG the corresponding parameters of the Gaussian
〈x|ρ1ρ2|y〉. Then the semigroup composition law is given by the following rule

R1=



A = a1− b2
1

d1+ a2
D = d2− b2

2

d1+ a2

B = − b1b2

d1+ a2
L = l1− (k1+ l2)b1

d1+ a2

K = k2− (k1+ l2)b2

d1+ a2
G = g1+ g2+ (k1+ l2)

4(d1+ a2)
+ ln

√
π

d1+ a2
.

(5)

We shall define the operator
√
ρ as the integral operator with the Gaussian kernel

〈x|√ρ|y〉 = exp[−(ãx2+ d̃y2+ 2b̃xy)+ l̃x + k̃y + g̃] (6)
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such that

〈x|ρ|y〉 =
∫ +∞
−∞
〈x|√ρ|z〉〈z|√ρ|y〉 dz. (7)

Then using the above given semigroup composition rule R1 one obtains by inversion the
following rule for the square root of a density operator

R2=



ã = a − b d̃ = d − b
b̃ = −

√
−b(a + d − 2b)

where the minus sign was chosen in order to have−b̃ > 0.

l̃ + k̃ = l + k

1+ 2

√ −b
a + d − 2b

l̃ − k̃ = l − k

g̃ = 1

2
g − 1

2
ln

√
π

a + d − 2b
− (l + k)2

8(
√
a + d − 2b + 2

√−b)2.

(8)

3. Transition probability

The characteristic function of the density operatorρ is given by [11, 16]

CFρ(α, τ ) = trace(W(α, τ)ρ) = exp[− 1
4(appα

2+ aqqτ 2+ 2apqατ)] (9)

where

(W(α, τ)ψ)(x) = exp

[
iτ

(
x − α

2

)]
ψ(x − α)

aqq = 2(〈Q2〉 − 〈Q〉2) = 1

a + d + 2b

app = 2(〈P 2〉 − 〈P 〉2) = 4(ad − b2)

a + d + 2b

apq = 2( 1
2(〈QP + PQ〉 − 〈Q〉〈P 〉) =

i(a − d)
a + d + 2b

. (10)

Here(Qψ)(x) = xψ(x) and(Pψ)(x) = −i(dψ(x))/dx).

If A is the matrix

(
aqq apq
apq app

)
and detA = aqqapp − a2

pq it is easy to show that

a = detA + 1

4aqq
− iapq

2aqq
(11)

d = ā and

b = −detA − 1

4aqq
. (12)

In order to simplify the calculations we shall use the property (F4). Then it suffices to
consider thatρ1 is a thermal state (i.e. an undisplaced and unsqueezed state) and that only
ρ2 is a displaced squeezed thermal state. It is well known that in this case [14]

〈x|ρ1|y〉 = exp

[
− 1

2
cothβ(x2+ y2)+ xy

sinhβ
− ln

√
π

tanhβ

]
. (13)
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If ρ ′2 is an undisplaced squeezed thermal state with

〈x|ρ ′2|y〉 = exp[−(ax2+ dy2+ 2bxy)+ g′] (14)

then the displaced squeezed thermal stateρ2 is obtained asρ2 = W(α, τ)ρ ′2W(−α,−τ) and
the corresponding kernel is given by〈x|ρ2|y〉 = exp [iτ(x − y)]〈x − α|ρ ′2|x − α〉, i.e.

〈x|ρ2|y〉 = exp[−(ax2+ dy2+ 2bxy)+ lx + ky + g] (15)

wherel = 2(a + d)α + iτ , k = l̄ andg = g′ − (a + d + 2b)α2. Now we can use the rules
R1 and R2. After long but simple calculations we obtain the main result of the paper

F(ρ1, ρ2) = 2√
1+ T −√T exp[−uT(A1+ A2)

−1u] (16)

where1 = det(A1+ A2), T = (detA1− 1)(detA2− 1) and whereu is the column vector(
α

τ

)
. A Gaussian density matrix describes a pure state if and only if detA = 1 [11]. If

ρ1 is a pure state then [11]

F(ρ1, ρ2) = traceρ1ρ2 = (2π)−1
∫ +∞
−∞

CFρ1(−α,−τ)CFρ2(α, τ )dα dτ (17)

and we obtain directly the same result as that obtained from the above formula

F(ρ1, ρ2) = 1√
det((A1+ A2)/2)

exp[−uT(A1+ A2)
−1u]. (18)

The result of Twamley is re-obtained foru = 0 in a more compact form which is independent
of the parametrization. We note that due to (F4) formula (17) is valid for any two displaced
squeezed thermal states. In order to compare our result with that of Twamley [8] we shall
use the canonical decomposition of any correlation matrix (i.e. of any positive definite
matrix) A (obtained with the aid of a theorem of Balian, De Dominicis and Itzykson [17]
concerning the canonical decomposition of symplectic matrices) (see also [11])

A = OTMΓMO (19)

whereO =
(
c −s
s c

)
, with c = cosθ ands = sinθ , M =

(
m 0
0 1/m

)
andΓ =

(
γ 0
0 γ

)
.

Then detA = γ 2 and

1+ T = γ 2
1 γ

2
2 + 1+ γ1γ2

[
S2

(
(m1m2)

2+ 1

(m1m2)2

)
+ C2

((
m1

m2

)2

+
(
m2

m1

)2)]
(20)

where C = cos(θ2 − θ1) and S = sin(θ2 − θ1). The correspondence between the
parametrization from [8] and our parametrization is given by coshr = 1

2(m + (1/m)) and
cosh(β/4) = γ /(γ 2 − 1)1/2. Now we consider the exponential factorF = exp[−uT(A1 +
A2)
−1u]. The first remark concerns the following form of(A1+ A2)

−1

(A1+ A2)
−1 = OT

1M−1
1 (Γ1+ Γ̃2)

−1M−1
1 O1 (21)

whereΓ̃2 = M−1
1 O1OT

2M2Γ2M2O2OT
1M−1

1 . Then

F = exp[−ũT(Γ1+ Γ̃2)
−1ũ] (22)
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whereũ = M−1
1 O1u. The matrix elements ofG = (Γ1+ Γ̃2)

−1 are given by

Gα̃α̃ = γ1+ γ2(S
2(m1m2)

2+ C2(m1/m2)
2)

1

Gτ̃ τ̃ = γ1+ γ2((S
2/(m1m2)

2)+ C2(m2/m1)
2)

1

Gα̃τ̃ = −γ2CS(m
2
2− (1/m2

2))

1
. (23)

Whenθ1 = θ2 andm1 = m2 = 1 we re-obtain the result from [9].

4. Conclusions

In this paper we have developed a completely new method for the treatment of the
complicated square-root factors from the Uhlmann formula for the transition probability,
in the case of Gaussian density operators. This method can be applied to multimode
states. Also it can be very useful for the computation of various mean values of the
exponential operators whose exponents are at most quadratic in coordinate and momentum
operators [15].
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